Every single year, huge volumes of natural resources are being wasted on making things that we don’t really need. Studies have discovered that people living in Germany use just a quarter of all their possessions on a regular basis. This means then that whenever we talk of a shortage of raw materials or of conserving our planet’s natural resources, we are automatically also talking about consumer behaviour. The excessive lifestyles of the world’s more affluent societies are primarily to blame for the fact that supplies of some raw materials are gradually being used up. Take indium – a material needed to produce flat screens – as an example: the Clausthal Institute of Environmental Technology (CUTEC) recently calculated the static lifetime of indium reserves to be a mere 13 years. There is a real risk, therefore, that there will be a shortage of this metal in just a few years’ time. On the surface, the situation appears to be much the same for copper, an essential component for practically all kinds of modern electronics. Economically viable reserves of copper – from today’s point of view – will have been used up in 39 years’ time. As is so often the case in life, however, the subject of raw material shortages is more complex than it would appear to be at first glance. There are a whole host of factors that play a role in determining whether supplies of a raw material are critical or not. Copper, for example, has not been added to the list of critical substances because there are very good recycling systems in place for this raw material and the current global recycling rate of 20% is likely to rise considerably in the future. Copper recycling rates in Germany already lie at 45%. There are, therefore, many things that countries around the world can do to improve their recycling figures.
> Definitions: reserves v. resources |
---|
Two terms are often used to assess our planet’s supplies of raw materials: reserves and resources. The term ‘reserves’ is more informative simply because it is more relevant over the medium term. It refers to the volumes of raw materials that can technically and economically be expected to be mined. In contrast, the term ‘resources’ refers to an estimate of the amounts of raw materials that are believed to exist but are unable to be mined with today’s technology. |
The remaining length of time that raw materials are expected to be available to us is listed as the so-called ‘static lifetime’. This figure is calculated by dividing reserves and/or resources by current annual consumption
A number of different factors have to be taken into account to be able to come up with a reliable assessment of just how critical the situation is for the various raw materials. Besides looking at the static lifetime and the recyclability of a material, it is also important to evaluate its economic importance and its substitutability, i.e. whether the raw material can be substituted with another or not. Moreover, trade restrictions can influence supplies as can the location and the number of mines around the globe: Are the regions politically stable? How concentrated is production of the raw material? This is precisely what CUTEC has done – assessing just how critical the situation is for 14 different raw materials. We have summarised the information as an infographic which is also available as a download.
We have put together some more information about the various raw materials for all those interested in finding out more about this subject. These include a general description of the raw materials and their areas of use as well as some facts and figures about their recyclability and substitutability, their availability and current trade restrictions. All statements are based on CUTEC’s 2016 study.
Chromium
Chromium is a silvery white, corrosion-resistant, malleable yet hard, paramagnetic metal with a high melting point (approx. 1,907 °C). Over 90% of the chromite mined across the world is used in metallurgy. With the majority of chromium being used in alloys, its other applications (such as in the chemicals industry or for refractory materials) play only a minor role.
Metallic chromium and trivalent chromium compounds (e.g. the naturally occurring chromite ore) present no risk to health. By contrast, hexavalent chromium compounds (CrVI) are poisonous, carcinogenic and mutagenic. They are primarily used as a corrosion inhibitor and as a primary product for numerous chromium compounds.
Approx. 27 million tonnes of chromium are currently being produced each year with chromium reserves lying at over 480 million tonnes. This means that it has a static lifetime of 18 years. If only the volume of reserves is taken into account, then chromium is a relatively scarce raw material. However, having said that, chromium resources are estimated to be a good 12,000 million tonnes. If mining continues at the same levels as today, then the static lifetime of the resources is over 444 years.
About 83% of chromium mining is carried out in three countries: South Africa produces the highest volumes (just under 56%), followed by Kazakhstan (14%) and India (13%). The market share of the producing companies, however, is not so concentrated with the three largest producers mining a total of just under 37%.
Chromium recycling currently lies at approx. 13% and is commercially viable – explaining why there is a high demand for steel and iron scrap containing chromium. Inorganic chromium compounds are being substituted more and more because of the health hazards they pose.
Chromium cannot be substituted in its main areas of use in metallurgy. According to a report published by the European Commission, supplies of chromium have been classified as critical. This can be put down to the production of chromium being so concentrated with the three largest producing countries dominating the market.
Several countries have introduced measures to restrict the trade of chromium. According to the information published by the OECD regarding export restrictions on raw materials, export tax is levied on chromium waste and scrap by Russia (6.5%) and Pakistan (25%). India also has export licensing requirements for chromium ore and concentrates. South Africa has introduced such licensing requirements for other chromium products as well.
Gallium
Gallium is a silvery white metal. It is primarily needed to produce gallium compounds such as gallium arsenide, gallium nitride, gallium phosphide and gallium antimonide. These compounds are then used to manufacture semiconductors for integrated circuits (e.g. for smartphones) and optoelectronic devices (LEDs, laser diodes, photodiodes, solar cells etc). Moreover, these compounds are used for low melting point metal alloys or as a substitute for mercury in thermometers.
Experts are forecasting that the demand for gallium will increase enormously for thin film photovoltaics and microchips as well as for the area of white LEDs and other future technologies.
In 2015, gallium mine production lay at 435 tonnes. For the most part, gallium is obtained as a by-product of treating bauxite as part of the aluminium production process. A less common source of gallium is from processing zinc. The average gallium content in bauxite reserves is put at 50 ppm (ppm = part per million). Reserves of bauxite are estimated to be 28,000 million tonnes and resources to be 65,000 million tonnes.
There is no firm data about the production and reserves of gallium. However, by taking the data that is available and assuming that 95% of gallium is obtained from bauxite, it is possible to give a rough estimate of the gallium reserves and resources as well as to calculate its static lifetime. The results of these estimates reveal that the reserves of gallium currently lie at approx. 1.4 million tonnes and the resources at approx. 3.3 million tonnes. The extremely large bauxite reserves mean that gallium has a static lifetime of over 3,000 years. If the resources are taken into account, then this figure rises to 7,471 years. However, having said this, not all of the gallium in the bauxite reserves can be extracted.
There is no effective substitute for gallium arsenide for some of its areas of use in integrated circuits. Liquid crystals can be used in displays instead of LEDs. Indium phosphide or helium-neon can replace gallium arsenide in laser diodes. Silicon-based power amplifiers can be used as a substitute for gallium in mobile phones. Silicon is gallium's main competitor when it comes to solar cells.
According to the information published by the OECD, export restrictions have been imposed on gallium in several different countries. China uses a mixture of export tax (5%) and export quotas; export licensing requirements are also in place. Russia has imposed a 6.5% export tax.
Gold
In 2015, the price of gold was 8% lower than it had been in the year before and 30% lower than in 2012 when it hit an all-time record high. Gold is primarily used to produce jewellery, in the electronics industry (contacts), in dentistry, for coins and medals, as an investment, to gold plate surfaces as well as for optical applications (coatings, mirrors).
In 2015, global gold mine production amounted to 3,000 tonnes. Looking at the current reserves of 56,000 tonnes, gold has a static lifetime of 19 years. In 2015, 140 tonnes of gold were recovered from new and old scrap in the USA – just slightly less than total consumption of gold in the country. The amount of gold being recycled has been steadily dropping since 2011 due to the fall in price for producing primary sourced gold. Despite this fact, supplies of gold have not been classified as critical.
Approx. 34% of all gold mining is carried out by three countries: China mines the most with just under 16%, followed by Australia (10%) and India (8.1%).
The recyclability of gold is high. 25% of the gold being used in manufacturing processes has been recycled. Gold can be substituted in both electrical / electronic products and jewellery by using non-precious metals as the base material and then alloying this with gold. Many of these products are continuously being further developed so that the gold content can be reduced without performance being impacted.
According to the information published by the OECD regarding export restrictions on raw materials, Benin, Fiji, Indonesia, Mali, Senegal, Sierra Leone and South Africa have all introduced export licensing requirements for their gold trade. Benin and Fiji have also imposed a 3% export tax. There would appear to be no other export restrictions in other countries.
Indium
Indium is a soft, silvery white heavy metal and can be used with most other metals to make alloys to increase the strength and the corrosion resistance of the alloy system. Indium tin oxide (ITO) is both transparent and electrically conductive making it an essential material for liquid crystal displays and flat screens.
Besides being used for thin film coating, low temperature alloys and soft solder (e.g. lead-free solder), indium is also used in semiconductors (e.g. in LEDs and laser diodes) as well as in thin film solar cells.
Indium will continue to be very important for display applications in the future and so demand for this material will increase. Other areas of application that will grow in importance include thin film photovoltaics and white LEDs. The amount of indium needed to produce LEDs and photovoltaic modules could make up 20% of primary sourced indium by 2020. This figure lay at 7% in 2012. Looking at the growing demand for smartphones and tablets, the share needed for display applications could grow by 5.5% every year.
In 2015, indium mine production lay at 755 tonnes. 95% of all indium is obtained as a by-product of zinc production processes. The average indium content in zinc reserves is put at around 50 ppm; zinc reserves and resources are estimated to be 200 million tonnes and 1,900 million tonnes respectively. The reserves, resources and static lifetime of indium have been calculated based on this data. The results of these calculations reveal that the reserves of indium currently lie at 10,000 tonnes and the resources at 95,000 tonnes. This puts the static lifetime of indium at just 13 years; if the resources are taken into account, this figure rises to 126 years.
Approx. 78% of all indium is mined in three countries: China mines the most (49%), followed by South Korea (approx. 20%) and Japan (approx. 10%). Production of indium is, therefore, extremely concentrated, occurring in just a few regions.
Indium is primarily recycled by treating residue from sputtering processes (cathode sputtering). Highly volatile prices and the concerns regarding the continued availability of indium have resulted in greater efforts being made to find substitutes for this material. It is, however, proving very difficult to find substitutes for its use in displays. First attempts have been made to use antimony tin oxide as a substitute. Antimony, though, is controversial because it is both toxic and carcinogenic. Carbon nanotubes are also being looked at as an alternative for ITO in displays, solar cells and touch screens. Supply risks exist, therefore, because indium is difficult to substitute in its main area of use (LCDs) and demand for indium can be expected to rise.
Supplies of indium from China are both restricted and highly regulated. Mining companies must apply for a licence and must comply with the export quotas imposed on them by the authorities. China introduced an export tax on indium in 2006; this was reduced from 15% to 5% in 2009. Russia also charges an export tax amounting to 6.5%.
Cobalt
Cobalt, a transition metal, is ferromagnetic and very hard. It maintains both its stability and its magnetic properties at high temperatures and has relatively low thermal and electrical conductivity. Future demand is expected to primarily come from manufacturers of lithium ion batteries as well as from businesses developing new areas of application for superalloys (e.g. hard-wearing cobalt chromium molybdenum alloys in orthopaedic implants, high temperature superalloys for the aviation industry). The use of cobalt in catalysts to produce synthetic fuels will also increase in the future.
In 2015, global cobalt mine production amounted to 124,000 tonnes. Reserves currently lie at 7.1 million tonnes giving cobalt a static lifetime of 57 years. There are estimated to be 25 million tonnes of terrestrial cobalt resources. More than 120 million tonnes of cobalt resources have also been identified in manganese nodules and crusts on the seabed.
50.8% of global mine production is carried out in the Democratic Republic of Congo. Other important countries include China (5.8%), Russia (5.1%), Canada (5.1%) and Australia (4.8%). This means that about 62% of all mined cobalt comes from just three countries and approx. 72% from five countries.
Cobalt recycling rates lie at 16%. In some cases, substituting cobalt with another substance can lead to a loss in product performance.
Cobalt has been classified as a ‘conflict material’ as such a large percentage is mined in the Democratic Republic of Congo – a country with a history of political instability, exploitation, corruption and civil war and which is also one of the poorest countries in the world.
Copper
Different countries use copper for very different purposes. At the moment, it is primarily used as copper metal and in alloys (brass, bronze, nickel silver) to make, for example, pipes, cables, wires and sheet metal.
Furthermore, copper is effectively the basis for all future electrical and electronic technologies. This soft and malleable metal does not corrode when exposed to air (forms a protective oxide layer) and is only affected by oxidising acids. Copper can be further processed into many different shapes such as sheets, films and wires. Its most important properties are its electrical conductivity, its thermal conductivity as well as its ability to be alloyed with many other metals.
Annual global production of copper currently lies at approx. 19 million tonnes. Global copper reserves are estimated to be 720 million tonnes [USGS 2016] giving it a static lifetime of 39 years. The amount of copper resources that have been identified have been put at around 2,100 million tonnes, which would mean that – at the current rate of consumption – the resources would be sufficient for approximately another 112 years.
The main export country is Chile with a share of approx. 31% of global production. Other important countries include China (9.4%), Peru (8.6%), the USA (6.7%) and the Democratic Republic of Congo (5.3%).
Added together, the three most important mining countries have a share of approx. 49% of global production. The three most important producing companies have an overall share of a good 29.4%.
Copper is easy to recycle; the rates of recycling given, however, differ between 20% and 47%. German recycling rates (over 40%) clearly show that much can still be done in this area. The almost unique properties of copper – primarily due to its electrical conductivity – make it difficult to substitute.
According to the information published by the OECD, China has reduced VAT rebates on copper wiring. Indonesia has export licensing requirements for copper waste and scrap. Russia uses a variety of export taxes ranging between 10% and 50%. Zambia also imposes an export tax of 15% on various copper materials. There are a number of other countries that have also imposed trade restrictions on copper.
Niobium
For the most part, niobium is found in nature as pyrochlore or niobite (mixed crystal with iron, tantalum and manganese). A further ore containing niobium and tantalum elements is coltan (columbite-tantalite ore). Niobium has a very high melting point (2,468°C), is resistant to all acids except hydrofluoric acid and is only affected by molten alkalis. It is air-stable and corrosion resistant, also at high temperature. Furthermore, it has very good electrical and thermal conductivity. Niobium is used in many different applications thanks to its special properties.
In 2015, niobium production amounted to around 56,000 tonnes with reserves lying at around 4.3 million tonnes. This means it has a static lifetime of 77 years [USGS 2016]. A look at the producing countries reveals that Brazil is practically the only country supplying niobium with a share of over 89%. Canada supplies around 9% of niobium requirements. The situation is similar for the producing companies: the three most important firms produce practically all supplies of niobium (approx. 93%).
Niobium recycling rates have been put at 11%. Whilst niobium can be substituted in a number of different areas, such substitutions may involve high costs and/or a loss in product performance.
According to the OECD, the Dominican Republic and Vietnam have imposed an export tax of 5% and 20% on niobium ore and concentrates. Export licensing requirements exist in Grenada, Rwanda and the Philippines. There would appear to be no trade restrictions in either Brazil or Canada.
Phosphorus (phosphate)
Phosphorus is used by the agricultural sector as a fertiliser as well as to manufacture foodstuffs and animal feed. It can also be found in detergents, corrosion inhibitors and flame retardants.
Phosphorus is produced from phosphate rock. Annual global production of phosphate rock currently lies at approx. 223 million tonnes. Global phosphate rock reserves are estimated to be 69,000 million tonnes which gives it a static lifetime of 309 years. Resources of phosphate rock have been put at approx. 300,000 million tonnes, which would mean that – at the current rate of consumption – the resources would be sufficient for around another 1,345 years.
Approx. 71% of all phosphate rock is mined by three countries: China has the biggest share (approx. 45%) followed by Morocco (approx. 14%) and the USA (approx. 12%). Together the three most important producing companies have an overall share of a good 65%. Production of phosphate rock is, therefore, very concentrated – both from point of view of region and producing companies.
Phosphorus can, in principle, be recycled. REMONDIS has developed a patented system that enables phosphorus to be recovered from sewage sludge ash. To learn more, simply go to phosphorus recovery.
It is not possible to substitute phosphorus in its main area of use, i.e. in agriculture. It may be possible to exploit the phosphorus deposits on the seabed in the future but only if such an enterprise can be made commercially viable.
No trade restrictions known.
Platinum group metals (PGMs)
Platinum group metals consist of the six elements: platinum, palladium, rhodium, ruthenium, osmium and iridium. The CUTEC study primarily focuses on platinum and palladium. All of the platinum metals are very rare, expensive and chemically inert and all are used – except iridium – as a catalyst or catalyst additive. The density of platinum (21.5 g/cm³) is twice that of palladium. In contrast, the electrical conductivity of palladium (9.5·106 S/m) is almost identical to that of platinum (9.7·106 S/m) – both these values, however, are considerably lower than those of either silver or copper.
Platinum
Palladium
In 2015, global production of platinum amounted to 178 tonnes and of palladium to 208 tonnes. The reserves of both elements have been put at around 66,000 tonnes giving them a static lifetime of 171 years. The resources are estimated to be 100,000 tonnes.
Supplies of platinum and palladium, however, have been classified as ‘particularly critical’ as mining activities are primarily carried out in South Africa (approx. 51%) and Russia (approx. 27%). The market share of the three largest companies lies at almost 68%. Production of platinum and palladium is, therefore, very concentrated – both from point of view of region and producing companies.
Recycling rates lie at just under 35%. The method used to recycle industrial catalysts is considered to be particularly efficient. The economic importance of platinum, palladium and rhodium is very high indeed and all these elements are difficult – and, in some cases, impossible – to substitute in many of their areas of use. According to a study published by the European Union, whilst substitution may be possible, it also involves high costs and/or a loss in product performance. The options available to substitute platinum and palladium are, therefore, extremely limited.
Many countries consider supplies of PGMs to be ‘at risk’ or ‘critical’ as mining is restricted to just a few countries. At the moment, however, PGMs are being traded all around the world and no trade restrictions have been identified. Russia currently imposes a 6.5% export tax on all PGM exports. The 2012 miners’ strike in South Africa also had an impact on PGM production. This could happen again in the future.
Tantalum
Tantalum is primarily found in nature as tantalite or as microlite and wodginite. As is the case with niobium, it is also contained in coltan. Tantalum has a very high melting point (2,996°C). It is hard but also ductile and malleable. Moreover, it is resistant to all acids except hydrofluoric acid and alkalis, is corrosion resistant and has very good electrical and thermal conductivity. Tantalum is used in a great number of very different fields thanks to its special properties. 42% of all tantalum, though, is used to produce micro-capacitors in computers, vehicle electronics and mobile phones as well as by the aerospace and aviation industries.
In 2015, tantalum mine production lay at almost 1,200 tonnes. With reserves of around 100,000 tonnes, it has a static lifetime of 83 years. For the most part, resources have been identified in Australia, Brazil and Canada but specific figures are not available.
Approx. 79% of all tantalum mined comes from three countries: Rwanda has the highest share of the market (50%) followed by the Democratic Republic of Congo (approx. 17%) and Brazil (approx. 13%). Production of tantalum is, therefore, extremely concentrated with the three largest producing countries dominating the market.
According to the EU, 6% of tantalum is currently being recycled. In general, it is possible to substitute tantalum with another substance but the substitutes may not necessarily achieve the same performance. It should be noted here, however, that supplies of the alternative material, niobium, have also been classified as particularly critical.
Trade restrictions have been imposed by several different countries. According to the information published by the OECD, Rwanda is the only producing country to monitor its production of tantalum. Rwanda has export licensing requirements for tantalum ore and concentrates and has banned the export of tantalum waste and scrap. China has reduced VAT rebates on tantalum and tantalum products. Russia has levied an export tax (6.5%) on tantalum waste and scrap.
Titanium
Titanium unites many interesting properties. It is very light and has great mechanical strength. Furthermore, it has a high melting point and low thermal expansion coefficients and is resistant to many substances (including acids and salt water). Titanium and titanium alloys are, therefore, very important for many applications. Around 95% of the titanium produced worldwide is used as titanium dioxide and can be found in paints, varnishes, plastics, paper, glass and ceramics. The remaining 5% is processed into titanium metal.
Demand for this metal is expected to increase as new areas of use are discovered (corrosion inhibitor for seawater desalination plants, implants, miniaturized capacitors, dye solar cells, superalloys).
The static lifetime for this metal has been put at 130 years with mine production lying at 6.1 million tonnes and reserves at 790 million tonnes.
Despite its great economic importance, supplies of this metal have not been classified as critical as there is a sufficient number of producing countries spread across the world (Top 3 countries: approx. 38%).
6% of titanium is currently being recycled. Titanium dioxide can be substituted in many applications. It is, however, very difficult to substitute titanium in high-tech products because of its excellent strength, its resistance to corrosion and its very light weight.
Several countries have imposed trade restrictions. The Ukraine and Vietnam charge export tax on titanium waste, scrap, ore, concentrates and products – with the tax rate varying between 5% and 45%. A number of other countries have also introduced trade restrictions.
Tungsten
Tungsten is only found in chemical compounds in nature and never in its elementary form. Tungsten has robust physical properties and has the highest melting point of all unalloyed metals and the second-highest of all elements after carbon. Tungsten is primarily used in alloys to produce hard and high temperature alloyed steels.
In 2015, global mine production amounted to just under 87,000 tonnes with reserves of 3.3 million tonnes. This gives it a static lifetime of 38 years. There are no firm figures available about the potential resources; it is merely stated that tungsten resources are widely distributed around the world. Production of tungsten is very concentrated with the market being highly dependent on China as it is by far the biggest producer (approx. 82%). Vietnam (5.7%) and Russia (4.4%) are next on the list but they produce far less tungsten. This means that these three countries own over 91% of global tungsten resources. Moreover, Chinese state-owned firms have a market share of over 83% so that China practically monopolises the market.
Tungsten recycling rates have been put at 37%. The recycling of the material is very dependent on economic conditions. As a general rule, though, it can be recycled. Substituting tungsten for another product may – in some areas of use – lead to higher costs or to a loss in product performance.
China has imposed trade restrictions on tungsten. Export quotas have been reduced over the last few years.
Zinc
Zinc is primarily used to protect steel against corrosion. It is, however, also used to produce zinc-based die-casting alloys and brass alloys, medicines, cosmetics, paints, varnishes, ceramics and pigments.
Annual global zinc production currently lies at 13.4 million tonnes. Global zinc reserves have been put at 200 million tonnes giving it a static lifetime of 15 years. Zinc resources have been estimated to be approx. 1,900 million tonnes, which would mean that – at the current rate of consumption – the resources would be sufficient for another 142 years.
36.6% of all zinc production is carried out by China. Other important countries include Australia (11.8%), Peru (10.2%), the USA (6.3%) and India (6.2%). This means that just three countries are responsible for approx. 59% of all zinc mining activities and five countries for approx. 71%. Together, the three most important producing companies have an overall share of a good 54.2%.
Zinc recycling rates lie at almost 8%. Many elements can be used as a substitute for zinc when it comes to chemicals, electronics and pigments. Substitution is, therefore, at least possible for these applications.
Several countries have imposed trade restrictions on zinc. China has reduced VAT rebates on various zinc products. Russia has imposed an export tax (30%) on zinc waste and scrap.
Zircon
Zircon is the most important naturally occurring mineral of the element zirconium and is used in the ceramics industry for wall and floor tiles, bathroom and technical ceramics, glazes and enamels. Moreover, zirconium can be found in chemicals, in basic moulding material used by foundries, in refractory products, television tubes, abrasives, glass and explosives.
In 2015, zirconium production amounted to around 1.41 million tonnes. With reserves lying at 78 million tonnes, it has a static lifetime of 55 years. The resources have been estimated to be 60 million tonnes which means its static lifetime – from point of view of resources – is 43 years.
A look at the producing countries shows that Australia has a share of approx. 36%, South Africa 27% and China approx. 10%. This means that just under 72% of global production is carried out by three countries. Other important countries include Indonesia (ca. 8% of global production) and the USA (approx. 4%). The five biggest producers, therefore, are responsible for approx. 85% of global production. The Top 3 producing companies have an overall share of a good 66%. Production of zircon is, therefore, very concentrated – both from point of view of region and producing companies.
There are no figures available regarding zircon recycling rates. The options for substituting zircon are very limited. The high demand for zircon and the fact that it cannot be substituted in certain applications have resulted in the supplies of this raw material being classified as particularly critical.
China has imposed trade restrictions on zircon. Export quotas have been reduced over the last few years.
Diese Seite verwendet aktuelle Techniken, die in dem von Ihnen verwendeten Browser unter Umständen nicht korrekt angezeigt werden können.
Bitte aktualisieren Sie Ihren Internet-Explorer oder weichen auf einen anderen Browser wie Chrome oder Firefox aus.
Schließen